T-LAB Home
T-LAB 10.2 - HELP ON-LINE Prev Page Prev Page
T-LAB
Introduzione
T-LAB: cosa fa e cosa consente di fare
Requisiti e Prestazioni
Preparazione del Corpus
Preparazione del Corpus
Criteri Strutturali
Criteri Formali
File
Importare un singolo file...
Preparare un Corpus (Corpus Builder)
Aprire un Progetto Esistente
Impostazioni di Analisi
Impostazioni Automatiche e Personalizzate
Personalizzione del Dizionario
Analisi delle Co-occorrenze
Associazioni di Parole
Co-Word Analysis e Mappe Concettuali
Confronti tra Coppie
Analisi delle Sequenze e Network Analysis
Concordanze
Co-occurrence Toolkit
Analisi Tematiche
Analisi Tematica dei Contesti Elementari
Modellizazione dei Temi Emergenti
Classificazione Tematica di Documenti
Classificazione Basata su Dizionari
Testi e Discorsi come Sistemi Dinamici
Analisi Comparative
Analisi delle Specificità
Analisi delle Corrispondenze
Analisi delle Corrispondenze Multiple
Cluster Analysis
Singular Value Decomposition
Strumenti Lessico
Text Screening / Disambiguazioni
Vocabolario
Stop-Words
Locuzioni e Multi-Words
Segmentazione delle parole
Altri Strumenti
Gestione Variabili e Modalità
Ricerca Avanzata nel Corpus
Classificazione di Nuovi Documenti
Contesti Chiave di Parole Tematiche
Esportare Tabelle Personalizzate
Editor
Importare-Esportare una lista degli Identificativi
Glossario
Analisi delle Corrispondenze
Catene Markoviane
CHI quadro
Cluster Analysis
Codifica
Contesto Elementare
Corpus e Sottoinsiemi
Disambiguazione
Documento Primario
Forma e Lemma
Graph Maker
IDnumber
Indici di Associazione
Isotopia
Lemmatizzazione
Lessia e Lessicalizzazione
MDS
Multiwords
N-grammi
Naïve Bayes
Normalizzazione del Corpus
Nuclei Tematici
Occorrenze e Co-occorrenze
Omografia
Parole Chiave
Polarità fattoriali
Profilo
Soglia di Frequenza
Specificità
Stop Word List
Tabelle Dati
TF-IDF
Unità di Analisi
Unità di Contesto
Unità Lessicale
Valore Test
Variabili e Modalità
Bibliografia
www.tlab.it

Indici di associazione


In T-LAB gli indici di associazione (o di similarità) sono utilizzati per analizzare le co-occorrenze delle unità lessicali (LU, lexical units) all'interno dei contesti elementari (EC, elementary contexts), cioè dati binari del tipo presenza/assenza.

Ad esempio, dati due LU e dieci EC, possiamo costruire il seguente esempio:

Gli stessi dati possono essere rappresentati nel modo seguente:

Generalizzando e utilizzando le lettere dell'alfabeto:

Le formule corrispondenti ai sei indici di associazione usati da T-LAB sono le seguenti:

Ipotizzando di aver ottenuto indici di associazione delle relazioni tra dieci LU, possiamo costruire una tabella come la seguente:

Di fatto, T-LAB costruisce ed analizza tabelle analoghe di dimensioni N x N (dove N può corrispondere a varie centinaia di colonne), sia mediante Multidimensional Scaling che mediante Cluster Analysis.

Tabelle simili sono anche utilizzate per calcolare indici di similarità del secondo ordine tra coppie di parole chiave (vedi lo strumento Associazioni di Parole).